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Abstract: Many of the known secure template constructions transform real-valued feature vectors to integer-valued vec-

tors, and then apply cryptographic transformations. Throughout this two-step transformation, the original

biometric data is distorted, whence it is natural to expect some loss in the accuracy. As a result, the ac-

curacy and security of the whole system should be analyzed carefully. In this paper, we provide a formal

accuracy analysis of a generic and intuitive method to transform real-valued feature vectors to integer-valued

vectors. We carefully parametrize the transformation, and prove some accuracy-preserving properties of the

transformation. Second, we modify a recently proposed noise-tolerant template protection algorithm and com-

bine it with our transformation. As a result, we obtain a secure biometric authentication method that works

with real-valued feature vectors. A key feature of our scheme is that a second factor (e.g., user password, or

public/private key) is not required, and therefore, it offers certain advantages over cancelable biometrics or

homomorphic encryption methods. Finally, we verify our theoretical findings through implementations over

public face and keystroke dynamics datasets and provide some comparisons.

1 INTRODUCTION

Convenience and fraud prevention requirements in

systems create a growing demand for biometric au-

thentication. A biometric authentication system con-

sists of two phases: enrollment and verification. In

the enrollment phase, a user’s biometric sample is

collected via a sensor, and distinctive characteristics

are derived using a feature extraction algorithm. A

digital representation of these characteristics (the fea-

ture vector or the template) is stored in the system

database. In the verification phase, a matching algo-

rithm takes a pair of templates as input, and outputs a

score. A decision (accept or reject) is made based on

the matching score. Therefore, biometric templates

should be stored in some protected form to guard

against adversarial attacks. Since 1994 (Bodo, 1994;

Schmidt et al., 1996), there have been tremendous

research and development efforts for creating secure

biometric schemes. In the most general terms, we can

classify biometric template protection methods under

four main categories: biometric cryptosystems (BC)

cancelable biometrics (CB), secure multiparty com-

putation based biometrics (SC), also known as keyed

biometrics (KB), and hybrid biometrics (HB) We re-

fer the reader to (Natgunanathan et al., 2016) for more

details on biometric template protection methods.

In BC and SC (whence in HB), cryptographic

functions and transformations are the main tools to

create secure templates. By construction, the under-

lying cryptographic primitives are defined over some

particular discrete domains, and therefore, feature

vectors are supposed to be some binary, or integer-

valued vectors. For example, the BC- and SC-based

secure fingerprint and iris identification algorithms in

(Blanton and Gasti, 2011; Karabina and Canpolat,

2016; Tuyls et al., 2005) assume that feature vec-

tors are represented as fixed length binary vectors,

and the Hamming distance (and some variants of the

Hamming distance) is used as a way of measuring

the similarity between feature vectors. More gener-

ally, a large class of template protection algorithms

assume that feature vectors are integer-valued, and

the similarity scores are calculated based on Ham-

ming distance, set difference distance, or edit dis-

tance; see (Natgunanathan et al., 2016). On the

other hand, biometric data, in general, is represented

through real-valued feature vectors as in the case of



face recognition (Huang et al., 2007; Kanade et al.,

2009; Rathgeb et al., 2014) and keystroke dynamics

(Banerjee and Woodard, 2012; Bours and Barghouthi,

2009; Fairhurst and Da Costa-Abreu, 2011; Killourhy

and Maxion, 2009). Therefore, many of the known

secure template constructions, including the exam-

ples given above, would not be immediately applica-

ble when feature vectors are composed of non-integer,

real numbers.

Contributions and organization of the paper

1. Provable accuracy: In Section 2, we recall a

generic method to transform real-valued feature

vectors to integer-valued vectors. This method is

derived from a simple and intuitive transforma-

tion. However, the actual challenge is to carefully

parametrize the transformation and rigorously

prove that the method is accuracy-preserving. In

summary, given a (non-cryptographic) biometric

authentication system that takes real-valued vec-

tors as input, our construction yields a new sys-

tem that now takes integer-valued vectors as input.

Our key result Corollary 1 proves that the rates of

the new system can be made arbitrarily close to

the rates of the original system.

2. Accuracy evaluation: For practical purposes, we

evaluate our theoretical findings over two publicly

available biometric datasets: the LFW face dataset

(Huang et al., 2007) and the keystroke-dynamics

dataset (Killourhy and Maxion, 2009). Our re-

sults are competetive with previously reported ac-

curacy results derived from the same datasets us-

ing some state-of-the-art biometric recognition al-

gorithms. For more details, please refer to Sec-

tion 3.

3. Cryptographic implementation: As stated pre-

viously, a major advantage of transforming real-

valued feature vectors to integer-valued vectors

is the ability to cryptographically secure biomet-

ric templates. In order to evaluate the practi-

cal impact of our results, we modify a recently

proposed noise tolerant secure template genera-

tion and comparison algorithm NTT-Sec (Kara-

bina and Canpolat, 2016) and combine it with our

transformation. As a result, we obtain a secure

biometric authentication method that works with

real-valued feature vectors. A key feature of our

scheme is that a second factor (e.g., user pass-

word, or public and private key) is not required,

and therefore, it offers certain advantages over

cancelable biometrics or homomorphic encryp-

tion methods. We verify our theoretical findings

through implementations over the LFW dataset

(Huang et al., 2007) and the keystrokes-dynamics

dataset (Killourhy and Maxion, 2009). For more

details, please refer to Section 4 and Table 4 for

comparison.

As a result, we expect that our new construction

and its explicit accuracy analysis will enable cryp-

tographic techniques to secure biometrics at a larger

scale.

2 AN ACCURACY-PRESERVING

TRANSFORMATION

Let s be a positive real number called scaling factor.

We define the following scale-then-round transforma-

tion StRs that maps a real-valued vector of length n to

an integer-valued vector of the same length.

Definition 1 (The Scale-then-Round transformation

StRs). For a real-valued vector x = (x1,x2, . . . ,xn),
the map StRs : Rn→ Z

n is defined as

StRs(x) = (⌊sx1⌉ ,⌊sx2⌉ , . . . ,⌊sxn⌉)

where ⌊·⌉ is the nearest integer function.

Now, let d : R
n×R

n→ R be a distance function

that satisfies the homogeneity and translation proper-

ties: for any x,y∈Rn and u∈R, d(ux,uy) = |u|d(x,y)
and d(x,y) = d(x+ u,y+ u). We have the following

lemma:

Lemma 1. Let the transformation StRs : Rn → Z
n

and the distance function d be defined as above. Let

x,y ∈ R
n be any real-valued vectors and denote their

transformations as the integer valued vectors X =
StRs(x) and Y = StRs(y) in Z

n. Then

|d(X ,Y )− sd(x,y)| ≤ 2εmax,

where εmax = max
u∈Rn

d(su,StRs(u)). Equivalently,

sd(x,y)−2εmax ≤ d(X ,Y )≤ sd(x,y)+2εmax and

d(X ,Y )−2εmax

s
≤ d(x,y)≤

d(X ,Y )+2εmax

s
.

Proof. Using the triangular inequality on both

d(sx,sy) and d(X ,Y ) we have

d(X ,Y )≤ d(X ,sx)+d(Y,sy)+d(sx,sy) and

d(sx,sy)≤ d(X ,sx)+d(Y,sy)+d(X ,Y ).

Since d(sx,sy) = sd(x,y) and both d(X ,sx) and

d(Y,sy) are bounded above by εmax, we have the de-

sired results.

Remark 1. Lemma 1 shows that given a pair of vec-

tors x,y ∈ R
n, d(X ,Y )/s lies in the neighborhood of

the distance d(x,y) up to an error margin of 2εmax/s.



In the next theorem, we observe that if the Minkowski

distance dp(x,y) = (∑n
i=1 |xi− yi|

p)1/p is deployed,

then dp(X ,Y )/s converges to dp(x,y). This result will

later be used in Theorem 2 where we compare the er-

ror rates of our new system (with integer valued vec-

tors) and the original system (with real valued vec-

tors).

Theorem 1. Let dp be the Minkowski distanced de-

fined on R
n×R

n, and let X = StRs(x), Y = StRs(y),
as defined before. For a given ε > 0, if a scalar s is

chosen such that s≥ n1/p/ε, then

|d(X ,Y )/s−d(x,y)| ≤ ε ∀x,y ∈ R
n

Proof. Note that

εmax = max
u∈Rn

dp(su,StRs(u)) (1)

≤

(

n

∑
i=1

(1/2)p

)1/p

=
n1/p

2
,

where the last inequality follows because |sui −
⌊sui⌉ | ≤ 1/2 for all i. Now, for a given ε >

0, choose s such that s ≥ n1/p/ε. This implies

n1/p/s≤ ε, and it follows from Lemma 1 and (1) that

|d(X ,Y )/s−d(x,y)| ≤ 2εmax/s ≤ n1/p/s ≤ ε, as re-

quired.

Next, we provide some theoretical estimates on

the new system’s False Accept Rate (FAR) and False

Reject Rate (FRR) as a function of the original sys-

tem’s error rates. Let GenP and ImpP denote the list

of genuine pairs and the list of impostor pairs, respec-

tively. Corresponding to these lists, let GenP′ and

ImpP′ denote the lists of transformed version of GenP

and ImpP respectively, defined as

GenP′ = {(StRs(x),StRs(y)) : (x,y) ∈ GenP}

ImpP′ = {(StRs(x),StRs(y)) : (x,y) ∈ ImpP}

Thus, #GenP = #GenP′ and #ImpP = #ImpP′ where

the symbol # represents the number of pairs. Note

that all of them are lists, not sets. Therefore it is

possible to see identical pairs, especially in the lists

GenP′ and ImpP′ because there may be several identi-

cal pairs which are the transformation of different pair

of vectors, i.e. there may exists (x1,y1),(x2,y2) such

that (x1,y1) 6= (x2,y2) but (StRs(x1),StRs(y1)) =
(StRs(x2),StRs(y2)).

For a distance function d on R
n and t ∈ R

+, the

FAR(t) and FRR(t) are defined as follows:

FAR(t) =
#{(x,y) ∈ ImpP : d(x,y)≤ t}

#ImpP
,

FRR(t) =
#{(x,y) ∈ GenP : d(x,y)> t}

#GenP
.

Now we can define the corresponding rates for T ∈
R
+:

FAR′ (T ) =
#{(X ,Y ) ∈ ImpP′ : d(X ,Y )≤ T}

#ImpP′
,

FRR′ (T ) =
#{(X ,Y ) ∈ GenP : d(X ,Y )> T}

#GenP
.

We have the following lemma:

Lemma 2. Let s be the scaling factor in transfor-

mation StRs and define εmax = max
u∈Rn

d(su,StRs(u)).

Then FAR
(

t− 2εmax
s

)

≤ FAR′ (st)≤ FAR
(

t + 2εmax
s

)

,

FRR
(

t + 2εmax
s

)

≤ FRR′ (st)≤ FRR
(

t− 2εmax
s

)

.

Proof. For the first inequality, define (X ,Y ) =
(StRs(x),StRs(y)) for an impostor pair (x,y) in the

list ImpP. Then by using the inequalities in Lemma

1, we have

d(x,y)≤ t−
2εmax

s

=⇒ d(X ,Y )≤ s
(

t−
2εmax

s

)

+2εmax = st

=⇒ d(x,y)≤
st +2εmax

s
= t +

2εmax

s
.

These inequalities mean that

• Any impostor pair (x,y) having distance less than

or equal to t− 2εmax
s

, which is already counted in

the rate FAR
(

t− 2εmax
s

)

, has its transformed pair

(X ,Y ) with a distance less than or equal to st.

Therefore, this transformed pair (X ,Y ) is needed

to be counted in the rate FAR′ (st). Thus,

FAR

(

t−
2εmax

s

)

≤ FAR′ (st) .

• Any pair (X ,Y ) in the list ImpP′ having distance

less than or equal to st, which is already counted

in the rate FAR′ (st), has its pre-transformed im-

postor pair (x,y) in the list ImpP with a distance

less than or equal to t + 2εmax
s

. Therefore, this im-

poster pair (x,y) is needed to be counted in the

rate FAR
(

t + 2εmax
s

)

. Thus,

FAR′ (st)≤ FAR

(

t +
2εmax

s

)

.

For the second inequality, now let (X ,Y ) denote

the transformation (StRs(x),StRs(y)) for a genuine



pair (x,y) in the list GenP. Then by using the inequal-

ities in Lemma 1, we have

d(x,y)> t +
2εmax

s

=⇒ d(X ,Y )> s
(

t +
2εmax

s

)

−2εmax = st

=⇒ d(x,y)>
st−2εmax

s
= t−

2εmax

s
.

These inequalities mean that

• Any genuine pair (x,y) in the list GenP having

distance greater than t + 2εmax
s

, which is already

counted in the rate FRR
(

t + 2εmax
s

)

, has its trans-

formed pair (X ,Y ) with a distance greater than st.

Therefore, this transformed pair (X ,Y ) is needed

to be counted in the rate FRR′ (st). Thus,

FRR

(

t +
2εmax

s

)

≤ FRR′ (st) .

• Any pair (X ,Y ) in the list GenP′ having distance

greater than st, which is already counted in the

rate FRR′ (st), has a pre-transformed genuine pair

(x,y) in the list GenP with a distance greater than

t − 2εmax
s

. Therefore, this genuine pair (x,y) is

needed to be counted in the rate FRR
(

t− 2εmax
s

)

.

Thus,

FRR′ (st)≤ FRR

(

t−
2εmax

s

)

.

Theorem 2. Let dp be the Minkowski distance defined

on R
n×R

n, and let X = StRs(x), Y = StRs(y), as de-

fined before. For a given ε > 0, if a scalar s is chosen

such that s≥ n1/p/ε, then

FAR(t− ε)≤ FAR′ (st)≤ FAR(t + ε) , and

FRR(t + ε)≤ FRR′ (st)≤ FRR(t− ε) .

Proof. Let ε > 0 be given and choose s such that

s≥ n1/p/ε. We already observed in the proof of Theo-

rem 1 that 2εmax/s≤ n1/p/s≤ ε. Using this inequality

together with the inequality

FAR′ (st)≤ FAR

(

t +
2εmax

s

)

from Lemma 2, and the fact that FAR(t2) ≥ FAR(t1)
for t2 ≥ t1, we obtain

FAR′ (st)≤ FAR

(

t +
2εmax

s

)

≤ FAR(t + ε) .

This proves one of the four inequalities in the state-

ment, and the other three inequalities can be proved

similarly.

Corollary 1. For any given ε̄ > 0, there exists T ≥
0 ∈ R such that

FAR(t)− ε̄≤ FAR′ (T )≤ FAR(t)+ ε̄, and (2)

FRR(t)− ε̄≤ FRR′ (T )≤ FRR(t)+ ε̄ (3)

Proof. Given ε̄ > 0 as in the statement of the corol-

lary, one can choose ε > 0 such that

FAR(t + ε)≤ FAR(t)+ ε̄,

FAR(t)− ε̄≤ FAR(t− ε) ,

FRR(t− ε)≤ FRR(t)+ ε̄,

FRR(t)− ε̄≤ FRR(t + ε) ,

because FAR(t) and FRR(t) can be modelled as a

continuously increasing and decreasing function pa-

rameterized by t, respectively. Now, choosing s as

suggested by Theorem 2, and combining the inequal-

ities of Theorem 2 with the inequalities above, we can

write

FAR(t)− ε̄≤ FAR(t− ε)≤ FAR′ (st)

≤ FAR(t + ε)≤ FAR(t)+ ε̄, and

FRR(t)− ε̄≤ FAR(t + ε)≤ FRR′ (st)

≤ FRR(t− ε)≤ FRR(t)+ ε̄.

Finally, setting T = st, we conclude

FAR(t)− ε̄≤ FAR′ (T )≤ FAR(t)+ ε̄, and (4)

FRR(t)− ε̄≤ FRR′ (T )≤ FRR(t)+ ε̄ (5)

Remark 2. Given a biometric authentication system

that takes real-valued feature vectors as input, de-

ploys Minkowski distance dp in its matching algo-

rithm, and runs at false accept rate FAR(t) and false

reject rate FRR(t), Theorem 2 and its Corollary 1 as-

sure the existence of a scalar s (and T = st) that can

be used to transform the system to integer-valued vec-

tors, deploys the same dp in its matching algorithm,

and runs at false accept rate FAR′ (T ) and false reject

rate FRR′ (T ) that are arbitrarily close to FAR(t) and

FRR(t) of the original system.

Remark 3. Smaller values of s would be preferred in

cryptographic secure template generation algorithms

due to the smaller size of the resulting feature vec-

tors and the smaller threshold values. However, it

seems challenging to find a tight lower bound for s

in Theorem 2, one can address this gap between the-

ory and practice as we explain in the following re-

mark. One should also be careful to choose s suffi-

ciently large to prevent dictionary attacks. Therefore,

in the light of Theorem 2, we outline a procedure in

Algorithm 1 to determine a suitable scalar s0 and a

threshold T0 from a given original system. We assume



Algorithm 1 To determine suitable parameters s and

T .

Input: t0,n, p, ε̄, IFAR, IFRR,DS,MinScalar

Output: s0≥MinScalar and T0 such that FAR′ (T0)∈
IFAR and FRR′ (T0) ∈ IFRR

1: Set a and b as the corresponding thresholds of
(

FAR(t0)− ε̄
)

and
(

FRR(t0)+ ε̄
)

, respectively

2: t1←Max
(

a,b
)

3: Set c and d as the corresponding thresholds of
(

FAR(t0)+ ε̄
)

and
(

FRR(t0)− ε̄
)

, respectively

4: t2←Min
(

c,d
)

5: ε←Min
(

(t0− t1),(t2− t0)
)

6: s0← ⌊n
1/p/ε⌉

7: while s0 > MinScalar and
(

FAR′ ((s0−1)t0) ∈

IFAR and FRR′ ((s0−1)t0) ∈ IFRR over DS
)

do

8: s0← s0−1

9: end while

that the original system deploys the distance function

dp(x,y) = (∑(xi− yi)
p)1/p, and has some some de-

sired rates FAR(t0), FRR(t0), where FAR(t), FRR(t)
are measured over some dataset DS. For example,

one may fix t0 so that the system runs at the equal er-

ror rate EER = FAR(t0) = FRR(t0). Our procedure

outputs a value of s0 ≥ MinScalar and a threshold

value T0 for which the new system’s accuracy is in a

close neighborhood of the original system’s accuracy.

More particularly, new parameters will assure that

FAR′ (T0) ∈ IFAR = [FAR(t0)− ε̄,FAR(t0) + ε̄] and

FRR′ (T0) ∈ IFRR = [FRR(t0)− ε̄,FRR(t0)+ ε̄] for a

given ε̄ > 0, where dp(X ,Y ) is used to compute the

distance between integer-valued vectors X = StRs(x)
and Y = StRs(y). In practice, ε̄ should be chosen so

that the new rates FAR′ (T0) and FRR′ (T0) are close

to FAR(t0) and FRR(t0), respectively. The correct-

ness of Algorithm 1 follows from Theorem 2.

3 APPLICATIONS OF THE NEW

TRANSFORMATION

In this section, we evaluate our theoretical findings

over two publicly available biometric datasets: the

LFW dataset (Huang et al., 2007) for face recogni-

tion, and the keystrokes-dynamics dataset (Killourhy

and Maxion, 2009). Our reasoning for choosing these

datasets is that they are widely referenced in the lit-

erature, and the biometric features in both of these

datasets are represented as real-valued vectors. As

an application of our construction, we propose some

concrete system parameters to convert these feature

vectors into integer-valued vectors, and verify its ac-

curacy preserving property.

3.1 Labeled Faces in the Wild

We use one of the most popular public face datasets

that was presented by Gary B. Huang et. al. (Huang

et al., 2007) and named “Labeled Faces in the Wild”

(LFW). The dataset comprises more than 13,000 face

images of 5,749 people collected from the web and

1,680 of them have two or more images. Among the

four different available versions of the datasets, we

use the original version of the LFW in our experiment.

In our implementation, we have used the face

recognition (Python) module of Adam Geitgey (Geit-

gey, 2017) which he built using the face recognition

model in the Dlib library of Davis E. King (King,

2011) where the model was trained on a dataset of

about 3 million face images (King, 2017). The His-

togram of Oriented Gradients (HOG) and the Convo-

lutional Neural Network (CNN) are the two methods

that we used for face detection in our experiment. The

HOG is faster than the CNN method but less accu-

rate in detecting faces from the images. For example,

we found that CNN only failed to detect the face in

Jeff Feldman 0001.jpg while the HOG failed to de-

tect faces in 57 images in the LFW. Therefore, we uti-

lize CNN detector in our experiments and report the

results that we found.

In the pre-trained model of Davis E. King, the

Euclidean Distance (ED) is measured between two

128-dimensional facial vectors. If the distance is less

than or equal to 0.6, then two images are considered

a match otherwise, it is a mis-match. The match and

mis-match are returned as “True” and “False”, respec-

tively, by Adam Geitgey in his face recognition mod-

ule. In other words, False implies correct identifica-

tion of impostors in the set of ImpP. Here, the accu-

racy is measured as follows

Accuracy =
#True in GenP+#False in ImpP

#GenP+#ImpP
(6)

=
#GenP× (1−FRR)+#ImpP× (1−FAR)

#GenP+#ImpP

Each image in the dataset is labelled with a per-

son’s name and contains that person’s face image. In

addition, some images contain faces of people other

than the person in the label. In our experiments, we

assume that the first detected face is the face of the

labelled person. Under this assumption, for GenP,

we find #True and #False as 231,752 and 10,505,

respectively. On the other hand, for ImpP, we find

#True and #False as 515,817 and 86,778,222, respec-

tively. So the sizes of GenP and ImpP are 242,257



and 87,294,039, respectively. Hence, our evaluation

yields 99.40% accuracy using the CNN method and

threshold t = 0.6 with ED; see Table 1. Note that our

accuracy evaluation confirms the results reported by

Davis E. King and Adam Geitgey (King, 2017; Geit-

gey, 2017), and also it is comparable to other state-of-

the-art models; see (Huang et al., 2007) for an exten-

sive list of results and comparisons.

3.1.1 Transforming LFW Feature Vectors

As mentioned before, a (detected) face in the image

is represented by a 128-dimensional real-valued vec-

tor, and the accuracy evaluations are performed us-

ing the ED function. In this section, we apply our

proposed transformation to obtain 128-dimensional

integer-valued feature vectors. We further replace the

ED by the Manhattan distance (MD) function. This

latter modification allows us to simplify the quadratic

distance formula to a linear one, which eventually

yields better efficiency in crpytographic computations

for secure template comparison.

In our analysis, we focus on three critical thresh-

old values t = 0.54, t = 0.6, and t = 0.66 as shown in

Table 1. These three thresholds capture FAR values

near 0.001, FAR values near 0.005, and the equal

error rate FAR= FRR≈ 0.03; with respect to the use

of the ED function. The threshold t = 0.6 provides a

basis for comparing our results to previously reported

results in (King, 2017; Geitgey, 2017). We should

first emphasize that switching from the ED to MD has

almost negligible impact on FAR and FRR as shown

in the first two rows of Table 1. The critical part is

Table 1: ED = Euclidean Distance, MD = Manhattan Dis-
tance, MD100, MD1376 = MD where the feature vector com-
ponents are scaled-then-rounded by integer 100 and 1376,
respectively.

Method FAR≈ 0.001 FAR≈ 0.005 EER

ED

t = 0.54 t = 0.6 t = 0.66

FRR= 0.091159 FRR= 0.043363 FRR= 0.033427

FAR= 0.000897 FAR= 0.005909 FAR= 0.033630

Accuracy = 0.9989 Accuracy 0.99399 Accuracy = 0.96637

MD

t = 4.846 t = 5.393 t = 5.941

FRR= 0.100096 FRR= 0.044989 FRR= 0.03358

FAR= 0.00087 FAR= 0.005896 FAR= 0.03365

Accuracy = 0.99885 Accuracy = 0.993995 Accuracy = 0.96635

MD100

t = 485 t = 539 t = 594

FRR= 0.099105 FRR= 0.04497 FRR= 0.033617

FAR= 0.00091 FAR= 0.006007 FAR= 0.03428

Accuracy = 0.99882 Accuracy = 0.993886 Accuracy = 0.965718

MD1376

t = 6668 t = 7421 t = 8175

FRR= 0.100088 FRR= 0.044973 FRR= 0.033555

FAR= 0.000873 FAR= 0.005908 FAR= 0.033702

Accuracy = 0.99885 Accuracy = 0.99398 Accuracy = 0.966299

to determine a suitable scalar s using Algorithm 1 so

as to preserve the accuracy after the StRs transforma-

tion. We explain the process in detail for t0 = 5.941

(i.e. FAR(t0) = 0.03365 and FRR(t0) = 0.03358)

over the dataset DS = LFW. First, we choose

ε̄ = 0.01 so that the new system’s error rates

would satisfy FAR′ (T0) ∈ IFAR = [FAR(5.941) −
ε̄,FAR(5.941) + ε̄] = [0.02365,0.04365], and

FRR′ (T0) ∈ IFRR = [FRR(5.941)− ε̄,FRR(5.941)+
ε̄] = [0.02358,0.04358].

Following the steps 1 to 4 in Algorithm 1,

we find the smallest ε = 0.093 such that

[FAR(5.941− ε) ,FAR(5.941+ ε)] ⊆ IFAR, and

[FRR(5.941+ ε) ,FRR(5.941− ε)] ⊆ IFRR. The step

5 in Algorithm 1 initializes s0 as shown below. Note

that p = 1 in the MD function.

s0 = ⌊n
1/p/ε⌉= ⌊128/0.093⌉= 1376.

Next, we need to choose a suitable value for

MinScalar. For this, we compute the average fea-

ture vector a = [a1, ...,a128] over all 13233 fea-

ture vectors in the LFW dataset, where ai is the

average of the absolute values of the i’th com-

ponents of the feature vectors. We find that

min(a) = min({ai}) = 0.035,max(a) = max({ai}) =
0.37, with an average of Mean(a) = ∑ai/128 =
0.098. We choose s = MinScalar = 100, and obtain

min(StRs(a)) = 4,max(StRs(a)) = 37, with an aver-

age of Mean(StRs(a)) = 10. This ensures that creat-

ing a dictionary for the set of transformed feature vec-

tors is an infeasible task for an attacker because 10128

feature vectors are expected on average. Finally, the

Algorithm 1 returns

s0 = 100 and T0 = ⌊s0t0⌉= 594,

and the new system’s rates become FAR′ (594) =
0.03428 and FRR′ (594) = 0.033617, which are ex-

tremely close to the original system’s rates. Please

see the results in the last two rows of Table 1 for

the new system derived from the original system with

the threshold values of t0 = 4.846, t0 = 5.393, and

t0 = 5.941. As expected, the new system’s rates are

close to the original system’s rates.

In Figure 1, we show the Receiver Operating

Characteristic (ROC) curve and the Area Under Curve

(AUC) for ED, MD, MD100 and MD1376. In all the

following figures, the False Positive Rate and True

Positive Rate represent FRR and (1−FAR), respec-

tively. The curves in Figure 1a depict that the dif-

ferences among the used techniques are very small

which is further supported by AUC. It shows that the

AUC of ED and MD are 0.98604 and 0.98601, re-

spectively. In other words, the area differ by 0.00003

only. Furthermore, we find the AUC of MD100

and MD1376 as 0.98595 and 0.98602, respectively.

Clearly, MD1376 is a better choice than MD100 in

terms of accuracy. However, note that the loss of

0.00006 in accuracy, if MD100 is used, is actually very









similarly, and they are same as in Table 2; see Ta-

ble 3 for a complete list of the parameters. In Ta-

Table 3: The systems parameters (SP), secure template
bit size, and timing results in millisecond (ms) using
the NTT-Sec-R algorithm on face and keystroke public
datasets.

SP
Template size (Bit)

Time (ms)

n t s p m Hash Match

Face 128 5.941 100 257 599 5391 68.17 309.07

Keystroke
s055 31 1.510 100 67 157 1099 3.68 9.21

s049 31 6.718 100 67 673 4711 21.65 322.63

ble 3, we also report on the bit size of secure biomet-

ric template. Recall that a secure template (the out-

put of NTT-Hash-R) is represented as an Fq element

with m× (⌊log2 p⌋+ 1) bits. Hashing (secure tem-

plate generation) and matching times are also reported

in Table 3. We confirm that NTT-Sec-R does not

alter the accuracy-preserving properties of our con-

struction and our experimental results confirm that the

FRR and FAR values of the NTT-Sec-R algorithm are

same as that of the MD when integer-valued feature

vectors are used. All the codes are written in C pro-

gramming language. The results are obtained on an

Intel Core i7− 7700 CPU @ 3.60GHz desktop com-

puter that is running Ubuntu 16.04 LTS. The timings

are based on a high level implementation of the al-

gorithms and only the GCC compiler is utilized for

optimization using the argument -O3.

A Security analysis: The security of NTT-Sec-R

should be discussed with respect to the irreversibility

and indistinguishability notions as defined in (Kara-

bina and Canpolat, 2016). They are formally mod-

elled between a challenger and a computationally

bounded adversary. For irreversibility, several at-

tacks have been considered in (Karabina and Canpo-

lat, 2016), including guessing attack, brute force at-

tack, and discrete logarithm attack. It was also ar-

gued in (Karabina and Canpolat, 2016) that reversing

the templates is the best strategy for an adversary in

a distingushing attack. Following the security analy-

sis in (Karabina and Canpolat, 2016), we inspect that

the best strategy for an adversary to attack our mod-

ified NTT-Sec-R (with respect to both irreversibility

and indistinguisahbility notions) is to solve the dis-

crete logarithm problem in the underlying cyclotomic

group. We provide some details in the following.

Assuming g is a generator of G, the adversary

solves e := logg h and ei := logg gi for each i= 1, . . . ,n
using a discrete-logarithm solver. Then the adversary

gets an equation

e =
n

∑
i=1

eiXi mod pm

since |G| = pm. Using a Knapsack-solver, the adver-

sary finds a solution X1, . . . ,Xn; and recovers X . As-

suming the cost of computing the discrete logarithm

of an element in G is CDLP and the cost of solving the

above modular Knapsack problem is CKnapsack, then

the total cost is

(n+1)CDLP+CKnapsack.

Discrete logarithms in Fp2m can be computed in a

time bounded by (max(p,m))O(log2 m); see Theorem

3 in (Barbulescu et al., 2014). Ignoring the cost

CKnapsack of the underlying Knapsack problem, we es-

timate the cost of this discrete logarithm attack to be

(n+1)(max(p,m))log2 m. Therefore, based on the val-

ues of n, p and m from Table 3, we estimate that cost

of discrete logarithm based attacks over the LFW face

dataset, the Subject s055, and the Subject s049 are

292, 258, and 293, respectively.

Revocability of templates: Another im-

portant security property is the cancella-

bility/revocability/renewability of templates.

NTT-Sec-R naturally allows this property as follows.

Instead of using the same public system parameters

for each user, one can make the system parameters

user specific. This can be achieved in (at least) two

different ways. First, the server can generate a public

system parameter set per user. If a user’s template is

stolen or revoked, then a new set of parameters can

be generated for that user, and a new template can be

enrolled. This would also provide an extra advantage

for the indistinguishability of the templates, because

now template spaces (Fq2 ) become algebraically

independent of each other. As a second method,

each user can derive his own system parameter set

from a secret password or a token. Then the user

can generate and enroll his template in the server. At

the time of authentication, the user can regenerate

the parameter set, compute his template, and send

them to the server as part of his query. The server

proceeds as before and can authenticate the user.

This second approach makes the reversibility and

distinguishability problems much harder because now

an attacker has to search for p and an ordered base

elements gi, i = 1, ...,n, which belong to a set of size

approximately (p/2)(p/2−1) · · ·(p/2− (n−1)).
Comparisons: We provide a comparison between

our method and four other relevant and recently pro-

posed methods for face template protection. In (Feng

et al., 2010), Feng et al. combine distance preserving

dimensionality reduction transformation, a discrimi-

nality preserving transformation, and a fuzzy commit-

ment scheme. The method in (Feng et al., 2010) re-

quires assigning a random secret token to each user

(namely, a random projection matrix) during enroll-

ment; and users need to provide their token dur-

ing authentication. Therefore, the scheme in (Feng



Table 4: Before/After = No/Using cryptographic algorithm, N/P = Not provided, Enroll = Enrollment, and Auth = Authen-
tication. For the LFW dataset, before and after results show the MD results using the respective scalar recommended by
Algorithm 1.

Dataset
GAR@FAR EER Secret Multifactor

Before After Before After Enroll. Auth. Authentication

Feng et al. (Feng et al., 2010)

FERET

N/P N/P

21.66% 3.62%

Yes Yes YesCMU-PIE 18.18% 8.26%

FRGC 31.75% 9.13%

Pandey et al. (Pandey et al., 2016)

Extended Yale B

N/P

96.49%@0FAR

N/P

0.71%

Yes No NoCMU-PIE 90.13%@0FAR 1.14%

Multi-PIE 97.12%@0FAR 0.90%

Jindal et al. (Jindal et al., 2019)

FEI

N/P

99.98%@0FAR

N/P

0.01%

Yes Yes YesCMU-PIE 99.98%@0FAR 1.14%

Color FERET 99.24%@0FAR 0.38%

Boddeti (Naresh Boddeti, 2018)
LFW 94.56%@0.1FAR 94.53%@0.1FAR

N/P N/P Yes Yes No
IJB-A 45.92%@0.1FAR 45.78%@0.1FAR

FaceNet and FHE (2 decimal digits) IJB-B 48.31%@0.1FAR 48.31%@0.1FAR

CASIA 84.70%@0.1FAR 84.68%@0.1FAR

Our method LFW 89.99%@0.1%FAR 90.09%@0.1%FAR 3.36% 3.39% No No No

et al., 2010) can be seen as a two factor authentica-

tion scheme.

The scheme in (Pandey et al., 2016) uses deep

Convolutional Neural Network (CNN) to map face

images to maximum entropy binary (MEB) codes.

Each user is assigned a unique random MEB code

during enrollment, and a deep CNN is used to learn

a robust mapping of users’ face images to their MEB

codes. A cryptographic hash of the MEB code is

stored on the server side, which represents the secure

template of the underlying biometric data. Plain MEB

codes are not needed during authentication, because a

queried face image goes through the already trained

CNN, and the hash of its output is compared to the

stored hash value. It is claimed in (Pandey et al.,

2016) that even if an attacker knows the CNN param-

eters of a user, he cannot obtain significant advantage

to attack the system.

The method by Jindal et al. in (Jindal et al., 2019)

also uses deep CNN similar to the method in (Pandey

et al., 2016), but (Jindal et al., 2019) improves the

matching performance over (Pandey et al., 2016) by

using user specific random projection matrices. Sim-

ilar to the method in (Feng et al., 2010), each user

is assigned a random secret token during enrollment;

and users need to provide their token during authenti-

cation.

The method in (Naresh Boddeti, 2018) uses fully

homomorphic encryption (FHE), where each user has

to generate and manage her public and private key

pair. In a typical application, a user stores her private

key on his device, encrypts her biometric informa-

tion under her private key, and enrolls this encrypted

template through a server. At the time of authentica-

tion, the server receives another encrypted template

and uses the homomorphic encryption properties to

compute the (encrypted) distance between two tem-

plates.

Our scheme does not require using user specific

secret, or public/private keys. As a result, it can be

thought as a single factor authentication scheme. User

specific secrets can easily be adopted in our scheme to

obtain extra security (e.g., cancelable templates); see

our revocability of templates discussion in the security

analysis part above for more details. This would also

increase the matching accuracy of the system similar

to the improvements gained in earlier work due to use

of user-specific secrets.

In summary, our proposed scheme provides rea-

sonable security levels with comparable performance

with respect to previously known systems but comes

with an advantage of not requiring any user specific

secrets or training during enrollment and authentica-

tion. Our comparisons are summarized in Table 4.

Finally, we should note that it is challenging to

make a global comparison between the matching ac-

curacy of different methods. This is mainly because

of the use of different datasets, feature extraction al-

gorithms, and accuracy measures. For example, er-

ror rates over LFW are not reported in (Feng et al.,

2010; Pandey et al., 2016; Jindal et al., 2019). And

the reason for the difference between our error rates

and the error rates as reported in (Naresh Boddeti,

2018) over LFW is that (Naresh Boddeti, 2018) uses

FaceNet and we use ResNet for feature extraction. We

chose ResNet in our implementation because ResNet

has been more commonly used for comparisons over

LFW, and that ResNet and FaceNet are comparable in

terms of their accuracy. It should be clear from the ac-

curacy preserving properties of our construction that

deploying FaceNet in our scheme would yield error

rates which are arbitrarily close to the rates in (Naresh

Boddeti, 2018).



5 CONCLUSION

We presented a method to create secure biometric

templates from real-valued feature vectors. We ver-

ified our theoretical findings by implementing a re-

cently proposed secure biometric template generation

algorithm over face and keystroke public data sets.

We expect that our new construction and its explicit

accuracy analysis will enable known cryptographic

techniques to protect biometric templates at a larger

scale.
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